Enhanced permeability and retention effect

The Enhanced Permeability and Retention (EPR) effect is the property by which certain sizes of molecules (typically liposomes, nanoparticles, and macromolecular drugs) tend to accumulate in tumor tissue much more than they do in normal tissues.[1][2][3] The general explanation that is given for this phenomenon is that, in order for tumor cells to grow quickly, they must stimulate the production of blood vessels. VEGF and other growth factors are involved in cancer angiogenesis. Tumor cell aggregates of size as small as 150-200 nm, start to become dependent on blood supply carried out by neovasculature for their nutritional and oxygen supply. These newly formed tumor vessels are usually abnormal in form and architecture. They are poorly-aligned defective endothelial cells with wide fenestrations, lacking a smooth muscle layer, or innervation with a wider lumen, and impaired functional receptors for angiotensin II. Furthermore, tumor tissues usually lack effective lymphatic drainage. All these factors will lead to abnormal molecular and fluid transport dynamics, especially for macromolecular drugs. Namely, this phenomenon was coined “enhanced permeability and retention (EPR)-effect” of macromolecules and lipids in solid tumors. The EPR-effect is even more enhanced by many pathophysiological factors involved in enhancement of the extravasation of macromolecules in solid tumor tissues. For instance, bradykinin, nitric oxide / peroxynitrite, prostaglandins, vascular permeability factor (also known as vascular endothelial growth factor VEGF), tumor necrosis factor and others. One factor that lends to the increased retention is the lack of lymphatics around the tumor region. This allows particles to stay in the tumor longer since they aren't filtered out of the system.

The EPR effect is important for nanoparticle and liposome delivery to cancer tissue. One of many examples is the work regarding thermal ablation with gold nanoparticles. Halas, West and coworkers have shown a possible complement to cancer therapy to radiation and chemotherapy, wherein once nanoparticles are at the cancer site they can be heated up in response to a skin penetrating near IR laser. This therapy has shown to work best in conjunction with chemotherapeutics or other cancer therapies.[4] The EPR effect helps to carry the nanoparticles and spread inside the cancer tissue.

References

  1. ^ Matsumura Y, Maeda H (December 1986). "A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs". Cancer Research 46 (12 Pt 1): 6387–92. PMID 2946403. http://cancerres.aacrjournals.org/cgi/pmidlookup?view=long&pmid=2946403. 
  2. ^ Duncan, R. and Sat Y.-N. (1998). "Tumour targeting by enhanced permeability and retention (EPR) effect". Ann. Oncol. 9 (Suppl.2): 39. 
  3. ^ Vasey PA, Kaye SB, Morrison R, et al. (January 1999). "Phase I clinical and pharmacokinetic study of PK1 [N-(2-hydroxypropyl)methacrylamide copolymer doxorubicin]: first member of a new class of chemotherapeutic agents-drug-polymer conjugates. Cancer Research Campaign Phase I/II Committee". Clinical Cancer Research 5 (1): 83–94. PMID 9918206. http://clincancerres.aacrjournals.org/cgi/pmidlookup?view=long&pmid=9918206. 
  4. ^ Poon RT, Borys N (February 2009). "Lyso-thermosensitive liposomal doxorubicin: a novel approach to enhance efficacy of thermal ablation of liver cancer". Expert Opinion on Pharmacotherapy 10 (2): 333–43. doi:10.1517/14656560802677874. PMID 19236203.